Sterically controlled population of the 1,2-cis-form of 1,2-dimethyl-3-tert-butyldiaziridine

Remir G. Kostyanovsky,* Gennadii V. Shustov, Vladimir V. Starovoitov and Ivan I. Chervin

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 938 2156; e-mail: kost@center.chph.ras.ru

1,2-Dimethyl-3-R-diaziridine ($R = Bu^t$) has been synthesized for the first time; as revealed by NMR the population of its 1,2-cis-form was shown to increase in polar solvents [1,2-cis/1,2-trans = 2 (D₂O), 0.5 (CDCl₃), 0.03 (C₆D₆); for 1,2-trans \rightarrow 1,2-cis in C₆D₆ at 32 °C $\triangle G^{\#} = 25$ kcal mol⁻¹] whereas solely the 1,2-trans-form was detected in diaziridines when R = Me, Et, Pri, Ph.

As a rule monocyclic diaziridines in solution^{1–3} and in the solid⁴ and gaseous^{5–7} states exist as 1,2-trans-isomers because the 1,2-cis-form is destabilized by n–n interaction of the nitrogen lone pairs and non-bonded interaction of N-substituents. According to ab initio calculations (3–21G with full geometry optimization) the energy difference between the 1,2-cis- and trans-forms is 8.6 kcal mol⁻¹, and the equilibrium concentration of the 1,2-cis-form is vanishingly small. Therefore the symmetrically-substituted diaziridines have C_2 symmetry and are chiral. This was undoubtedly confirmed by isolation of diaziridines \mathbf{A} , then \mathbf{B} and \mathbf{C}^9 in the optically active form, probably due to their rather high nitrogen inversion barrier [cf., for 1,2,3-trimethyldiaziridine in toluene $\Delta G_{\mathrm{inv}}^{\#} = 27.7$ kcal mol⁻¹

a R = Me **b** R = Et

 $\mathbf{b} \quad \mathbf{R} = \mathbf{E}\mathbf{t}$ $\mathbf{c} \quad \mathbf{R} = \mathbf{P}\mathbf{r}^{\mathbf{i}}$

 $\mathbf{d} \mathbf{R} = \mathbf{H}$

 $\mathbf{e} \ \mathbf{R} = \mathbf{B} \mathbf{u}^{\mathsf{T}}$

Scheme 1

(60 °C), $\Delta H^{\#}=26.6$ kcal mol $^{-1}$, $\Delta S^{\#}=-4.2$ e.u., lg A=12.6, $E_{\rm a}=27.3$ kcal mol $^{-1}$].

Nevertheless, population of the 1,2-cis-form was observed earlier in monocyclic diaziridine \mathbf{D} where it is stabilized by an intramolecular H-bond. In addition, using kinetically controlled chlorination of 1,6-diazabicyclo[3.1.0]hexanes the bicyclic 1,2-cis-diaziridines \mathbf{E} were obtained, which are isomerized into the thermodynamically more stable 1,2-transforms. In both cases destabilizing n-n interaction is weakened by n- π conjugation with a substituent at N or C, respectively.

Being stabilized by a covalent bond, the 1,2-cis-form of bicyclic diaziridine **F** predominates in the tautomeric equilibrium, 12 and it is the only form present in the 2-dimethylamino derivative **1** obtained in this work.†

† ¹H NMR (400.13 MHz), ¹³C NMR (100.62 MHz) in CDCl₃, standard TMS, δ /ppm, *J*/Hz; MS (EI, 20 eV), m/z (%).

1: yield 37%, bp 53–55 °C (1 Torr); ¹H NMR: 1.14 (s, endo-6-Me), 1.20 (s, exo-6-Me), 2.08 (m, 3-CH₂), 2.79 (ddd, 4-H_e, 2J –12.2, $^3J_{4e3a}$ 10.3, $^3J_{4e3e}$ 5.4), 3.20 (ddd, 4-H_a, 2J –12.2, $^3J_{4e3a}$ 11.0, $^3J_{4e3e}$ 7.3), 3.78 (dd, $^3J_{2e3a}$ 8.8, $^3J_{2e3e}$ 4.4) (cf. ref. 20).

2a, yield 38%, bp 72–74 °C; ¹H NMR: 1.33 (d, MeC, 3J 5.5), 2.43 (s,

2a, yield 38%, bp 72–74 °C; ¹H NMR: 1.33 (d, MeC, ³*J* 5.5), 2.43 (s, B-Me), 2.45 (s, A-Me), 2.56 (q, HC, ³*J* 5.5); ¹³C NMR: 11.23 (qd, *MeC*, ¹*J* 126.7, ²*J* 6.1), 38.22 (qd, A-Me, ¹*J* 135.2, ³*J* 2.4), 47.12 (qd, B-Me, ¹*J* 134.9, ³*J* 5.2), 61.14 (dq, CH, ¹*J* 171.5, ²*J* 6.1); MS: 86 (9) [M]⁺, 85 (19), 71 (50), 57 (50), 56 (72), 44 (13), 43 (20), 42 (100). Picrate of **2a**, mp 103–104 °C.

2b, yield 26%, bp 95–96 °C; ¹H NMR: 1.10 (t, MeC, ³*J* 7.3), 1.60 and 1.70 (m, CH₂, ²*J* –13.9), 2.40 (t, HC, ³*J* 6.1), 2.45 (s, B-Me), 2.46 (s, A-Me); ¹³C NMR: 10.10 (qt, MeC, ¹*J* 126.3, ²*J* 4.6), 19.0 (tm, CH₂, ¹*J* 126.3, ²*J* 4.9), 38.32 (qd, A-Me, ¹*J* 135.2, ³*J* 2.8), 47.36 (qd, ¹*J* 135.2, ³*J* 5.2), 67.25 (dtm, CH, ¹*J* 169.1, ²*J* 5.2); MS: 100 (20) [M]⁺, 99 (6), 86 (31), 85 (20), 84 (50), 71 (60), 70 (48), 58 (10), 57 (10), 56 (20), 44 (15), 43 (30), 42 (100). Picrate of **2b**, mp 105–106 °C.

2c, yield 33%, bp 103–104 °C; ¹H NMR: 1.00 (d, MeC, ³*J* 6.6), 1.12 (d, MeC, ³*J* 6.6), 1.67 (m, $HCMe_2$), 2.11 (d, HC, ³*J* 9.3), 2.46 (s, B-Me), 2.49 (s, A-Me); ¹³C NMR: 17.46 (qm, MeC, ¹*J* 125.3), 18.55 (qdm, MeC, ¹*J* 125.6, ²*J* 5.8), 24.00 (ddm, $CHMe_2$, ¹*J* 129.2, ²*J* 5.8), 37.50 (qd, A-Me, ¹*J* 134.7, ³*J* 2.6), 46.50 (qd, B-Me, ¹*J* 134.7, ³*J* 5.5), 71.26 (dm, CH, ¹*J* 167.5); MS: 114 (7) [M]⁺, 99 (17), 84 (23), 71 (50), 70 (18), 58 (28), 57 (10), 56 (10), 43 (40), 42 (100). Picrate of **2c**, mp 108–109 °C.

2d, yield 28%, bp 50–55 °C (1 Torr); ¹H NMR: 2.15 (s, A-Me), 2.62 (s, B-Me), 3.60 (s, HC), 7.37 (m, Ph); ¹³C NMR: 38.80 (qd, A-Me, ¹*J* 135.5, ³*J* 2.44), 47.30 (qd, B-Me, ¹*J* 135.1, ³*J* 5.3), 66.90 (dm, CH, ¹*J* 173.3, ³*J* 4.7), 127.6, 128.0 and 133.0 (m, Ph); MS: 148 (35) [M]⁺, 147 (4), 105 (17), 92 (8), 91 (100), 65 (8), 57 (45), 43 (8), 42 (8).

2e, yield 12%, bp 80–85 °C (200 Torr); *trans*-isomer: ^1H NMR: 1.08 (s, Bu¹), 2.18 (s, HC), 2.48 (s, B-Me), 2.68 (s, A-Me); ^{13}C NMR: 28.00 (qdh, $Me_3\text{C}$, ^{1}J 125.7, ^{3}J 3.3, ^{3}J 4.5), 32.00 (dm, $Me_3\text{C}$, ^{2}J 4.1), 39.60 (qd, A-Me, ^{1}J 135.1, ^{3}J 3.3), 48.60 (qd, B-Me, ^{1}J 135.1, ^{3}J 5.7), 73.60 (dm, CH, ^{1}J 166.4, ^{3}J 4.9); cis-isomer: ^{1}H NMR: 0.88 (s, Bu¹), 2.03 (s, HC), 2.62 (s, MeN); ^{13}C NMR: 24.80 (qdh, $Me_3\text{C}$, ^{1}J 125.3, ^{3}J 2.0, ^{3}J 4.5), 31.00 (dm, $Me_3\text{C}$, ^{2}J 4.1), 37.00 (qd, MeN, ^{1}J 135.5, ^{3}J 6.1), 79.80 (dm, ^{1}J 161.1, ^{3}J 5.1); MS: 128 (10) [M]⁺, 113 (4), 86 (40), 84 (62), 72 (14), 71 (100), 57 (11), 43 (16), 42 (38). Picrate of **2e**, mp 140–141 °C.

Benzal methylamine **3**, yield 76%, bp 50–52 °C (5 Torr); ¹H NMR: 3.52 (d, Me, ⁴*J* 1.7), 7.4 and 7.7 (m, Ph), 8.30 (q, HC, ⁴*J* 1.7).

Methylimine of pivalic aldehyde **4**, yield 70%, bp 74–76 °C; 1 H NMR: 1.10 (s, Bu¹), 3.25 (d, MeN, 4 J 1.6), 7.52 (q, H_e, 4 J 1.6).

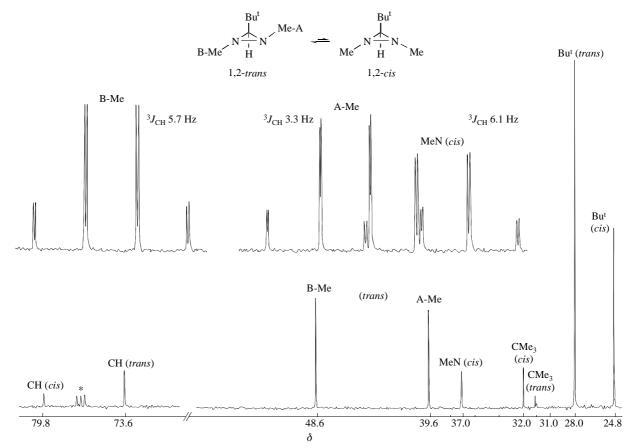


Figure 1 ¹³C NMR spectrum of 2e in CDCl₃.

The probability of populating the 1,2-cis-form in monocyclic 1,2-dimethyl-3-alkyldiaziridine ${\bf 2}$ is assumed to be governed by conditions of pure steric control, i.e. by destabilization of the 1,2-trans-form due to non-bonded interaction of MeN- and RC-substituents, as in unsymmetrically-substituted aziridines ${\bf G}^{13}$ and diaziridine ${\bf H}$ where the forms with cis-oriented Me groups predominate.

Diaziridines **2a**–**e** were synthesized by a modified method. ¹⁴ Previously described compounds **2a**¹⁵ and **2d**^{16,17} were not completely studied spectroscopically. Attempts to obtain **2e** by gaseous thermolysis of the corresponding tetrazoline failed, and the latter was cleaved thermally by cycloreversion to imine and azide. ‡

The resulting products were characterized by ¹H, ¹³C NMR and mass spectroscopy, as well as by satisfactory elemental analysis of the picrates.[†] Signals of the 1,2-*trans*-form are assigned on the basis of the high-field shift of the ¹³C signal of

 ‡ Diaziridine 1 was obtained by reaction of compound **F** with excess of Me₂NH (48 h, 20 °C). After evaporation of solvent the product was extracted with diethyl ether and distilled.

General method for the preparation of diaziridines 2a–c. To a solution of MeNH₂ (6.2 g, 200 mmol) in 50 ml of Et₂O, with cooling and stirring, was added dropwise a solution of aldehyde (50 mmol) in 20 ml of Et₂O, after which ground anhydrous K_2CO_3 (3 g) was added. After stirring during 24 h at 20 °C a diethyl ether solution of MeNHCl [obtained by the method 14 from aqueous MeNH₂ (50 ml, 80 mmol) and 17% solution of NaOCl (30 ml, 60 mmol)] was added. The mixture was kept for 3 days, then filtered and evaporated and the residue was distilled.

Benzal methylamine 3 was obtained by reaction of benzaldehyde with methylamine in benzene (10 h, 20 $^{\circ}{\rm C}).$

Methylimine of pivalic aldehyde **4** was synthesized using reaction of the aldehyde with an excess of MeNH₂ in Et₂O over ground KOH (3 days, 20 °C).

General method for the preparation of diaziridines **2d,e**. A mixture of Schiff's base (20 mmol), MeNH₂ (60 mmol) and MeNHCl (30 mmol) was kept for 7 days at 20 °C, then filtered and evaporated. The residue was chromatographed on silica gel 40/100 μ (**2d**) or Al₂O₃ [**2e**, the fraction after preliminary distillation, bp 50–85 °C (200 Torr)], with Et₂O as eluent, and then distilled *in vacuo*.

the A-Me group (which differs from those of B-Me by ca. 9 ppm due to the shielding γ -effect of the R substituent) and, also, the relationship ${}^3J_{\rm CH}^{cis}>{}^3J_{\rm CH}^{vans}$ for the carbons of these groups and the ring proton (cf. ref. 19) (Figure 1).

Only in the case of **2e** is the expected population of the 1,2-cis-form (**2'e**) realized, and equivalency of ¹H and ¹³C for both MeN groups is observed; in addition, the value of ³J_{CH} for the carbons of these groups (6.1 Hz) is close to ³J^{ch}_{CH} of the B-Me group (5.7 Hz) unlike ³J^{rans}_{CH} for the A-Me group (3.3 Hz) (Figure 1). The fact that equivalency of the Me–N groups is also observed in the low-temperature ¹H NMR spectrum (at –45 °C, in CDCl₃) excludes rigid skewness of the Me–N bonds due to repulsion of the nitrogen lone pairs and Me–N groups. A similar skewness supposed to be present in bicyclic 1,2-cis-diaziridines, such as *meso*-2,4-dimethyl-1,5-diazabicyclo[3.1.0]hexane, was also later disproved.²⁰

The proportion of 1,2-cis-form **2'e** in the equilibrium increases sharply with a rise in the solvent polarity (Scheme 1) in accordance with its own greater polarity compared with that of the 1,2-trans-form **2e** (μ = 2.6 and 1.0 D, respectively, by MNDO calculations; for the corresponding forms of unsubstituted diaziridine μ = 3.9 and 1.7 D by 3–21G calculations with full geometry optimization; also known²¹ are similar experimental values μ = 2.91 and 1.98 D for the 1,2-cis- and trans- forms, respectively, of 2-methyl-1,6-diazabicyclo[4.1.0]heptane and 1,2-diethyldiaziridine).

Upon distillation a sample enriched with the 1,2-transform **2e** was prepared, which made it possible to study the kinetics of isomerization (Scheme 1) by a ¹H NMR method (in C_6D_6 at 32 °C) and to obtain the following results: $k_1 = 2.6 \times 10^{-5} (\pm 1.6 \times 10^{-6}) \text{ s}^{-1}$, $\Delta G_1^{\#} = 24.3 \pm 0.04 \text{ kcal mol}^{-1}$; $k_2 = 7.9 \times 10^{-6} (\pm 4.9 \times 10^{-7}) \text{ s}^{-1}$, $\Delta G_2^{\#} = 25.0 \pm 0.04 \text{ kcal mol}^{-1}$. Thus, for the first time, nitrogen inversion barriers were measured directly for 1,2-cis \leftrightarrow trans isomerization. This is important for understanding the inversional interconversion mechanism of 1,2-trans-diaziridines, which may be visualized as a successive inversion of N atoms *via* a monoplanar

transition state and 1,2-cis-intermediate $^{3.6.8,9.21}$ The decrease of $\Delta G_{\rm ac}^{\#}$ for ${\bf 2e}$ in comparison with that for diaziridine ${\bf C}$ [$\Delta G_{\rm rac}^{\#}=27.8$ kcal mol⁻¹ (90 °C) in toluene] can be explained by the greater steric destabilization of the ground state of ${\bf 2'e}$, as in the case of 1-isopropyl-3,3-dimethyldiaziridine ($\Delta G^{\#}=25.2$ kcal mol⁻¹).²²

This work was accomplished with financial support from the Russian Foundation for Basic Research (grant no. 97-03-33021).

References

- A. Mannschreck, R. Radeglia, E. Gründemann and R. Ohme, *Chem. Ber.*, 1967, 100, 1778.
- 2 R. G. Kostyanovsky, A. E. Polyakov and V. I. Markov, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1975, 198 (in Russian).
- 3 W. B. Jennings and D. R. Boyd, in Cyclic Organonitrogen Stereo-dynamics, eds. J. B. Lambert and Y. Takeuchi, VCH Publishers Inc., New York, 1992, pp. 105–158.
- 4 O. A. Dyachenko, L. O. Atovmyan, S. M. Aldoshin, A. E. Polyakov and R. G. Kostyanovsky, *J. Chem. Soc., Chem. Commun.*, 1976, 50.
- 5 V. S. Mastryukov, O. V. Dorofeeva, L. V. Vilkov and A. V. Golubinski, J. Mol. Struct., 1976, 32, 16.
- 6 L. Klasinc, A. Mannschreck, M. Mintas and S. P. McGlynn, J. Chem. Soc., Perkin Trans. 2, 1994, 2059.
- 7 S. N. Denisenko, P. Rademacher, K. Kowski, G. V. Shustov and R. G. Kostyanovsky, J. Mol. Struct., 1995, 350, 49.
- 8 G. V. Shustov, A. Yu. Shibaev, Yu. V. Puzanov and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 1869 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 1671).
- H. Häkli, M. Mintas and A. Mannschreck, Chem. Ber., 1979, 112, 2028.
- 10 (a) R. G. Kostyanovsky, K. S. Zakharov, M. Zaripova and V. F. Rudchenko, *Tetrahedron Lett.*, 1974, 4207; (b) R. G. Kostyanovsky, K. S. Zakharov, M. Zaripova and V. F. Rudchenko, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1975, 875 (in Russian).

- 11 S. N. Denisenko, P. Rademacher and R. G. Kostyanovsky, Mendeleev Commun., 1998, 54.
- 12 G. V. Shustov, S. N. Denisenko, I. I. Chervin and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 2643 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 2422).
- 13 A. T. Bottini, R. L. Van Etten and A. J. Davidson, J. Am. Chem. Soc., 1965, 87, 755.
- 14 E. Schmitz and K. Schinkowski, Chem. Ber., 1964, 97, 49.
- 15 V. V. Kuznetsov, N. N. Makhova, Yu. A. Strelenko and L. I. Khmelnitskii, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 2861 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2496).
- 16 T. Akiyama, T. Kitamura, T. Isida and M. Kawanisi, Chem. Lett., 1974, 185.
- 17 B. Carboni, F. Tonnard and R. Carrie, Bull. Soc. Chim. France, 1987, 525.
- 18 P. Rademacher, B. Carboni, R. Carrie, P. Heymanns and R. Poppek, Chem. Ber., 1988, 121, 1213.
- 19 B. Carboni, L. Toupet and R. Carrier, Tetrahedron, 1987, 43, 2293.
- 20 G. V. Shustov, S. N. Denisenko, I. I. Chervin, N. L. Asfandiarov and R. G. Kostyanovsky, *Tetrahedron*, 1985, 41, 5719.
- 21 R. Ohme, E. Shmitz and P. Dolge, Chem. Ber., 1966, 99, 2104.
- 22 M. Jung and V. Schurig, J. Am. Chem. Soc., 1992, 114, 529.

Received: Moscow, 27th December 1997 Cambridge, 3rd February 1998; Com. 8/00162F